Computational data analysis shows that key developments towards the periodic system occurred in the 1840s

semanticscholar(2021)

引用 2|浏览2
暂无评分
摘要
The periodic system arose from knowledge about substances, which constitute the chemical space. Despite the importance of this interplay, little is known about how the expanding space affected the system. Here we show, by analysing the space between 1800 and 1869, how the periodic system evolved until its formulation. We found that after an unstable period culminating around 1826, the system began to converge to a backbone structure, unveiled in the 1860s, which was clearly evident in the 1840s. Hence, contrary to the belief that the ``ripe moment'' to formulate the system was in the 1860s, it was in the 1840s. The evolution of the system is marked by the rise of organic chemistry in the first quarter of the nineteenth-century, which prompted the recognition of relationships among main group elements and obscured some of transition metals, which explains why the formulators of the periodic system struggled accommodating them. We also introduced an algorithm to adjust the chemical space according to different sets of atomic weights, which allowed for estimating the resulting periodic systems of chemists using one or the other nineteenth-century atomic weights. These weights produce orderings of the elements very similar to that of 1869, while providing different similarity relationships among the elements, therefore producing different periodic systems. By analysing these systems, from Dalton up to Mendeleev, we found that Gmelin's atomic weights of 1843 produce systems remarkably similar to that of 1869, a similarity that was reinforced by the atomic weights on the years to come.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要