Sticky-MARTINI as a reactive coarse-grained model for molecular dynamics simulations of silica polymerization

NPJ COMPUTATIONAL MATERIALS(2022)

Cited 10|Views9
No score
Abstract
We report a molecular modeling paradigm to describe silica polymerization reactions in aqueous solutions at conditions that are representative of realistic experimental processes like biosilicification or porous silica synthesis – i.e. at close to ambient temperatures and over a wide range of pH. The key point is to describe the Si-O-Si chemical bond formation and breakage processes through a continuous potential with a balance between attractive and repulsive interactions between suitably placed virtual sites and sticky particles. The simplicity of the model, its applicability in standard parallelized molecular dynamics codes, and its compatibility with the widely used MARTINI coarse-grained force-field allows for the study of systems containing millions of atoms over microsecond time scales. The model is calibrated to match experimental results for the temporal evolution of silica polymerization in aqueous solution close to the isoelectric point, and can describe silica polymerization and self-assembly processes during encapsulation of a surfactant micelle.
More
Translated text
Key words
Coarse-grained models,Polymerization mechanisms,Porous materials,Theoretical chemistry,Materials Science,general,Characterization and Evaluation of Materials,Mathematical and Computational Engineering,Theoretical,Mathematical and Computational Physics,Computational Intelligence,Mathematical Modeling and Industrial Mathematics
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined