Long Non-Coding RNA HAGLROS Promotes the Malignant Progression of Bladder Cancer by Regulating the miR-330-5p/SPRR1B Axis

semanticscholar(2022)

引用 1|浏览3
暂无评分
摘要
BackgroundBladder cancer (BC) is the most common genitourinary malignancy worldwide, and its aetiology and pathogenesis remain unclear. Long noncoding RNAs can play vital roles in gene expression and diverse biological processes, especially in cancers. Accumulating evidence has shown that HAGLROS, a novel lncRNA, is closely related to the occurrence and progression of various cancers. However, the biological functions and underlying mechanisms of HAGLROS in BC remain unknown.MethodsThe relative expression of HAGLROS in BC was determined by bioinformatics analysis, transcriptome sequencing analysis and qRT–PCR. Gain- or loss-of-function assays were performed to study the biological roles of HAGLROS in BC. A CCK-8 assay was used to detect BC cell proliferation. BC cell invasion and migration were investigated by wound healing and Transwell assays. The cell cycle was analysed by flow cytometry assay. Western blot analysis and immunohistochemistry were performed to evaluate SPRR1B expression. The differential expression of candidate genes and their relationships were evaluated in data retrieved from the starBase database, the GEIPIA database, the Lnc2Cancer database and the LncBase database. FISH assays, subcellular fractionation assays and luciferase reporter assays were performed to explore the underlying molecular mechanisms of HAGLROS.ResultsHAGLROS expression is significantly upregulated in BC tissues and cells, and increasing HAGLROS expression was related to high pathologic grade. HAGLROS enhances the proliferation, migration and invasion of BC. Furthermore, SPRR1B is obviously upregulated and miR-330-5p is significantly downregulated in BC. Mechanistically, we found that HAGLROS is mainly located in the cytoplasm and positively regulates SPRR1B expression by sponging miR-330-5p, playing an oncogenic role in BC pathogenesis.ConclusionsThe present study demonstrates that HAGLROS is significantly overexpressed and plays an oncogenic role by regulating the miR-330-5p/SPRR1B axis in BC. HAGLROS may serve as a potential biomarker for the diagnosis and treatment of BC.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要