Chrome Extension
WeChat Mini Program
Use on ChatGLM

Microcavity-Modified Emission from Rare-Earth Ion-Based Molecular Complexes

ACS PHOTONICS(2022)

Cited 6|Views25
No score
Abstract
Despite the remarkable optical properties of rare-earth ion materials, their applications as light sources and in quantum technologies are often hindered by their long lifetimes and weak emission. Leveraging the natural compatibility of rare-earth ion molecular complexes with photonic structures, here we modify their photoluminescence properties by coupling them to a flexible open Fabry-Perot cavity. The full in situ tunability of the Fabry-Perot cavity allows fine control over its cavity modes and the achievement of resonant coupling between the rare-earth ion emission and the cavity modes. This configuration allows us to achieve a maximum photoluminescence enhancement factor of 30 and accelerate the decay rate up to two orders of magnitude. Our pump-power-dependent spectroscopic studies of the emitter-cavity system suggest that the cavity-modified emission is primarily caused by amplified spontaneous emission. These results suggest that integrating rare-earth ion molecular complexes with photonic structures could be a viable approach for the effective tuning of their optical properties. This natural compatibility, together with their versatile molecular structures and the resultant electronic states, renders rare-earth ion molecular complexes a potential alternative material platform for lighting and quantum applications.
More
Translated text
Key words
rare-earth ions,Eu(III) complexes,open Fabry-Perot cavity,Fourier imaging,amplified spontaneous emission
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined