A comprehensive characterization of virgin and recycled 316L powders during laser powder bed fusion

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T(2022)

引用 5|浏览6
暂无评分
摘要
The primary constraints hindering the widespread adoption of laser powder bed fusion (LPBF) are expensive raw materials, internal defects, difficulty in controlling the quality and stability, and lack of consistency in the powder feedstock. The spatters induced by the violent interaction between the laser and powder can be deposited on the unmelted powder bed, and if not effectively separated by sieving, they would pose a significant detriment to the characteristics and consistency of the recycled powders. In this work, a systematic investigation of the evolution mechanism of 316L powders after 10 and 30 successive recycling in the LPBF process was presented. Firstly, the variation mechanism of particle size distribution and morphology of 316L powder and the generation mechanism of heterogeneous particles were studied. Then, changes in microstructure and hardness trends were characterized. Finally, we emphasized the changes of chemical composition, phase composition, magnetic properties, and the formation mechanism of oxide spots. The results show that the circulation had significant effects on the physical properties, phase transformation, mechanical properties, and magnetic properties of the 316L powders, but had minor effects on the chemical composition, surface and cross-sectional microstructure. In addition, a large number of oddly shaped, large-diameter spatters were identified in the recycled powders, which could not be separated effectively by sieving, and the formation mechanism of the spatters were elaborated. Based on the comprehensive high temperature oxidation thermodynamics and experimental results, it was concluded that the circular oxide spots on the spatter surface were a composite of multiple oxides of Mn and Si. Further, it was also shown that the ferrite content, XRD peak characteristics, and magnetic properties in the recycled powders were governed by the droplet solidification modes, which in turn is determined by the chemical composition and cooling rates. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
更多
查看译文
关键词
Laser powder bed fusion,Powder recycling,Powder characterization,Oxidation,Magnetization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要