The impact of electroweak correction on the self-annihilation of lightest Kaluza-Klein particle in constraining the allowed mass using diffuse radio emission as upper limit

Mohamad Ridhauddin Mat Sabri,Zamri bin Zainal Abidin,Chorng-Yuan Hwang, Ching Yee Kiew, Sasidaran Subramaniam, Danial Ahmad Ariffin Lee

Research in Astronomy and Astrophysics(2022)

引用 0|浏览0
暂无评分
摘要
Abstract We propose the lightest Kaluza-Klein particle (LKP) γ1 as a cold dark matter (CDM) particle under the WIMP theory by employing the indirect detection of electron-positron (e−e+). We showed that the e−e+ interacts with the magnetic field of the galaxy clusters producing synchrotron emission. By setting the radio emission of galaxy clusters as the upper limit, we studied how many masses of LKP (MLKP ) γ1 will not go beyond the upper limit when they undergo self-annihilation to the standard model (SM). We considered the electroweak (EW) correction in the self-annihilation process and compared it to without the EW correction. We investigated two extreme channels (b¯b and µ+µ−) and introduced our framework into the sample of galaxy cluster environments (A119, A2199, A2142, A2744, A478, A2029) to obtain better constraints on the allowed masses for LKP γ1. In doing this, we obtained the allowed mass range for LKP γ1 in A2199 of 0.1-1.5 TeV without EW correction and 0.2-1.5 TeV with EW correction for the µ+µ− channel. Notably, we showed EW correction excluding <80% (for bb̄ channel) and <25% (for μ+μ− channels) of parameter combinations for all of the clusters except A2029, which are none excluded without EW correction.”
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要