Laser synthesis of nanomaterials for nuclear nanomedicine

Nanoscale and Quantum Materials: From Synthesis and Laser Processing to Applications 2022(2022)

引用 0|浏览2
暂无评分
摘要
Newly emerging nanomaterials promise a major advancement of methods of nuclear and radiative medicine for cancer treatment, as they can be used as carriers of diagnostic or therapeutic radionuclides, contrast agents in nuclear imaging modalities (PET, SPECT) or sensitizers of radiative therapies (X-ray, ion beams, etc.). However, nanotechnology-based approaches have reported a limited success so far due to a lack of suitable functional nanoformulations, which are safe, non-toxic, excretable from the body and have favorable pharmacokinetics for effective accumulation in the tumor. As follows from the results of our on-going research activities, many of the above-stated problems can we solved by the employment of nanomaterials fabricated by clean laser-ablative synthesis. Here, we review our recent data on some promising nanomaterials, prepared by this method, including biodegradable silicon (Si) nanoparticles (NPs), 152Sm-enriched samarium oxide NPs, and elemental bismuth (Bi) NPs, which can be used either as carriers/agents in radionuclide therapy, or sensitizers in radiative diagnostics or therapy. Advantages of proposed approach include exceptional purity and flexibility in synthesizing of NPs of required physico-chemical parameters (controlled size, shape, composition, and surface conditioning of NPs). Advances in laser-ablative fabrication of novel nanomaterials open up avenues for future implementations of nuclear and radiative medicine approaches for safe and efficient theranostics of tumors and metastasis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要