Gene regulation by a protein translation factor at the single-cell level

PLOS COMPUTATIONAL BIOLOGY(2022)

引用 5|浏览20
暂无评分
摘要
Author summaryIn the cell, proteins can bind to DNA to regulate transcription as well as to RNA to regulate translation. However, cells have mainly evolved to exploit transcription factors as specific gene regulators, while translation factors have remained as global modulators of expression. Consequently, transcription regulation has attracted much attention over the last years to unveil design principles of genetic organization and to engineer synthetic circuits for cell reprogramming. In this work, the phage MS2 coat protein was exploited to regulate the expression of a green fluorescent protein at the level of translation. This synthetic system was instrumental to gain fundamental knowledge on stochasticity and regulation at an overlooked level within the genetic information flow. Gene expression is inherently stochastic and pervasively regulated. While substantial work combining theory and experiments has been carried out to study how noise propagates through transcriptional regulations, the stochastic behavior of genes regulated at the level of translation is poorly understood. Here, we engineered a synthetic genetic system in which a target gene is down-regulated by a protein translation factor, which in turn is regulated transcriptionally. By monitoring both the expression of the regulator and the regulated gene at the single-cell level, we quantified the stochasticity of the system. We found that with a protein translation factor a tight repression can be achieved in single cells, noise propagation from gene to gene is buffered, and the regulated gene is sensitive in a nonlinear way to global perturbations in translation. A suitable mathematical model was instrumental to predict the transfer functions of the system. We also showed that a Gamma distribution parameterized with mesoscopic parameters, such as the mean expression and coefficient of variation, provides a deep analytical explanation about the system, displaying enough versatility to capture the cell-to-cell variability in genes regulated both transcriptionally and translationally. Overall, these results contribute to enlarge our understanding on stochastic gene expression, at the same time they provide design principles for synthetic biology.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要