Chrome Extension
WeChat Mini Program
Use on ChatGLM

CYP314A1-dependent 20-hydroxyecdysone biosynthesis is involved in regulating the development of pupal diapause and energy metabolism in the Chinese citrus fruit fly, Bactrocera minax

PEST MANAGEMENT SCIENCE(2022)

Cited 3|Views12
No score
Abstract
BACKGROUND Diapause is an environmentally preprogrammed period of arrested development, and characterized by metabolic depression that can occur during any development stage of insect. The insect steroid hormone 20-hydroxyecdysone (20E), is converted from ecdysone by the cytochrome P450 enzyme shade (CYP314A1), and it exerts a potent effect on the induction and maintenance of diapause in obligatory diapause insects. However, the regulatory mechanism of 20E in obligatory diapause development remains unclear. In this study, the function of 20E in the pupal diapause of Bactrocera minax was investigated. RESULTS We determined the expression pattern of Halloween P450 genes from larval to adult B. minax, and found differential expression of CYP314A1 from other P450 genes, with a high level in larvae and a low level in pupae. Dysfunction of CYP314A1 by dsCYP314A1 microinjection in third-instar larvae caused significant larval mortality or abnormal pupae. Compared with dsGFP and DEPC-water, dsCYP314A1-injected larvae had significantly reduced 20E titer and altered energy metabolism, and many individuals failed to pupate. Exogenous 20E microinjected into late third-instar larvae or 20E fed to early third-instar larvae both caused similar energy metabolism changes. The 20E-treated larvae of B. minax had reduced total lipids and increased amounts of trehalose and glycogen. Furthermore, 20E-treated diapause individuals showed rapid pupal development. CONCLUSION The 20E biosynthesis was regulated by the expression of CYP314A1, and was involved in the induction and termination phase of obligate diapause by regulating energy metabolism in B. minax. (c) 2022 Society of Chemical Industry.
More
Translated text
Key words
Bactrocera minax, 20-hydroxyecdysone, shade gene, diapause, energy metabolism
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined