Chrome Extension
WeChat Mini Program
Use on ChatGLM

Regulation of microtubule detyrosination by Ca2+ and conventional calpains

JOURNAL OF CELL SCIENCE(2022)

Cited 1|Views12
No score
Abstract
Detyrosination is a major post-translational modification of microtubules (MTs), which has significant impact on MT function in cell division, differentiation, growth, migration and intracellular trafficking. Detyrosination of alpha-tubulin occurs mostly via the recently identified complex of vasohibin 1 or 2 (VASH1 and VASH2, respectively) with small vasohibin binding protein (SVBP). However, there is still remaining detyrosinating activity in the absence of VASH1 and/or VASH2 and SVBP, and little is known about the regulation of detyrosination. Here, we found that intracellular Ca2+ is required for efficient MT detyrosination. Furthermore, we show that the Ca2+-dependent proteases calpains 1 and 2 (CAPN1 and CAPN2, respectively) regulate MT detyrosination in VASH1- and SVBP-overexpressing human embryonic kidney (HEK293T) cells. We identified new calpain cleavage sites in the N-terminal disordered region of VASH1. However, this cleavage did not affect the enzymatic activity of vasohibins. In conclusion, we suggest that the regulation of VASH1-mediated MT detyrosination by calpains could occur independently of vasohibin catalytic activity or via another yet unknown tubulin carboxypeptidase. Importantly, the Ca2+ dependency of calpains could allow a fine regulation of MT detyrosination. Thus, identifying the calpain-regulated pathway of MT detyrosination can be of major importance for basic and clinical research.
More
Translated text
Key words
Microtubules, Detyrosination, Vasohibin, Calcium, Calpain, Mass spectrometry
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined