JAK inhibitor blocks COVID-19-cytokine-induced JAK-STAT-APOL1 signaling in glomerular cells and podocytopathy in human kidney organoids

JCI insight(2022)

引用 15|浏览9
暂无评分
摘要
COVID-19 infection causes collapse of glomerular capillaries and loss of podocytes, terminating in a severe kidney disease called COVID-19 associated nephropathy (COVAN). The underlying mechanism of COVAN is unknown. We hypothesized that cytokines induced by COVID-19 trigger expression of pathogenic APOL1 via JAK-STAT signaling, resulting in podocyte loss and COVAN phenotype. Here, based on nine biopsy-proven COVAN cases, we demonstrated for the first time that APOL1 protein is abundantly expressed in podocytes and glomerular endothelial cells (GECs) of COVAN kidneys but not in controls. Moreover, a majority (77.8%) of COVAN patients carried two APOL1 risk alleles. We showed that recombinant cytokines induced by SARS-CoV-2 act synergistically to drive APOL1 expression through the JAK-STAT pathway in primary human podocytes, GECs, and kidney micro-organoids derived from a carrier of two APOL1 risk alleles but was blocked by JAK1/2-inhibitor, baricitinib. We demonstrated for the first time that cytokine-induced JAK-STAT-APOL1 signaling reduced the viability of kidney organoid podocytes but was rescued by baricitinib. Together, our results support the conclusion that COVID-19-induced cytokines are sufficient to drive COVAN-associated podocytopathy via JAK-STAT-APOL1 signaling and that JAK-inhibitor could block this pathogenic process. These findings suggest that JAK-inhibitors may have therapeutic benefits for managing cytokine-induced APOL1-mediated podocytopathy.
更多
查看译文
关键词
Cell Biology,Cytokines,Endothelial cells,Nephrology,iPS cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要