GIPR Agonism Inhibits PYY-Induced Nausea-Like Behavior.

Diabetes(2022)

Cited 17|Views32
No score
Abstract
The induction of nausea and emesis is a major barrier to maximizing the weight loss profile of obesity medications, and therefore, identifying mechanisms that improve tolerability could result in added therapeutic benefit. The development of Peptide YY (PYY)-based approaches to treat obesity are no exception, as PYY receptor agonism is often accompanied by nausea and vomiting. Here, we sought to determine whether glucose-dependent insulinotropic polypeptide (GIP) receptor agonism reduces PYY-induced nausea-like behavior in mice. We found that central and peripheral administration of a GIPR agonist (GIPRA) reduced conditioned taste avoidance (CTA) without affecting hypophagia induced by a PYY analog. The receptors for GIP and PYY (Gipr and Npy2r) were expressed by the same neurons in the area postrema (AP), a brainstem nucleus involved in the detection of aversive stimuli. Peripheral administration of a GIPRA induced neuronal activation (cFOS) in the AP. Further, whole-brain cFOS analyses indicated that PYY-induced CTA was associated with augmented neuronal activity in the parabrachial nucleus (PBN), an area of the brain that relays aversive/emetic stimuli to brain regions that control feeding behavior. Importantly, GIPR agonism reduced PYY-mediated neuronal activity in the PBN, providing a potential mechanistic explanation for how GIPRA treatment reduces PYY-induced nausea-like behavior. Together, our study provides a novel mechanism by which GIP-based therapeutics may benefit the tolerability of weight loss agents.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined