Efficient UAV-based mobile edge computing using differential evolution and ant colony optimization

PEERJ COMPUTER SCIENCE(2022)

引用 15|浏览5
暂无评分
摘要
Internet of Things (IoT) tasks are offloaded to servers located at the edge network for improving the power consumption of IoT devices and the execution times of tasks. However, deploying edge servers could be difficult or even impossible in hostile terrain or emergency areas where the network is down. Therefore, edge servers are mounted on unmanned aerial vehicles (UAVs) to support task offloading in such scenarios. However, the challenge is that the UAV has limited energy, and IoT tasks are delay-sensitive. In this paper, a UAV-based offloading strategy is proposed where first, the IoT devices are dynamically clustered considering the limited energy of UAVs, and task delays, and second, the UAV hovers over each cluster head to process the offloaded tasks. The optimization problem of dynamically determining the optimal number of clusters, specifying the member tasks of each cluster, is modeled as a mixed-integer, nonlinear constraint optimization. A discrete differential evolution (DDE) algorithm with new mutation and crossover operators is proposed for the formulated optimization problem, and compared with the particle swarm optimization (PSO) and genetic algorithm (GA) meta-heuristics. Further, the ant colony optimization (ACO) algorithm is employed to identify the shortest path over the cluster heads for the UAV to traverse. The simulation results validate the effectiveness of the proposed offloading strategy in terms of tasks delays and UAV energy consumption.
更多
查看译文
关键词
Internet of things, Mobile edge computing, Computation offloading, Differential evolution, Ant colony optimization, Particle swarm optimization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要