The role of ER stress and ATP/AMPK in oxidative stress meditated hepatotoxicity induced by citrinin.

Ecotoxicology and environmental safety(2022)

引用 14|浏览14
暂无评分
摘要
Citrinin, a secondary metabolite, can pose serious risks to the environment and organisms, but its hepatotoxic mechanisms are still unclear. Histopathological and ultrastructural results showed that citrinin-induced liver injury in Kunming mice, and the mechanism of citrinin-induced hepatotoxicity was studied in L02 cells. Firstly, citrinin mades L02 cell cycle arrest in G2/M phase by inhibition of cyclin B1, cyclin D1, cyclin-dependent kinases 2 (CDK2), and CDK4 expression. Secondly, citrinin inhibits proliferation and promotes apoptosis of L02 cells via disruption of mitochondria membrane potential, increase Bax/Bcl-2 ration, activation of caspase-3, 9, and enhance lactate dehydrogenase (LDH) release. Then, citrinin inhibits superoxide dismutase (SOD) activity and increases the accumulation of malondialdehyde (MDA) and reactive oxygen species (ROS), resulting oxidative damage in L02 cells; upregulates the protein expression of binding immunoglobulin protein (Bip), C/EBP homologous protein (CHOP), PKR-like ER kinase (PERK) and activating transcription factor6 (ATF6), inducing ER stress in L02 cells; increases the phosphorylation of AMP-activated protein kinase (AMPK) and decreases the content of adenosine-triphosphate (ATP), activating AMPK pathway in L02 cells. Eventually, pretreatment with NAC, an ROS inhibitor, alleviates citrinin-induced cell cycle G2/M arrest and apoptosis by inhibiting ROS-mediated ER stress; pretreatment with 4-PBA, an ER stress inhibitor, reversed ER stress and p-AMPK; pretreatment with dorsomorphin, an AMPK inhibitor, decreases citrinin-induced cell cycle G2/M arrest and apoptosis. In summary, citrinin induces cell cycle arrest and apoptosis to aggravate liver injury by activating ROS-ER stress-AMPK signaling pathway.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要