Latent, Cross-Linkable Triazole Platform on a Carbon Fiber Surface for Enhancing Interfacial Cross-Linking within Carbon Fiber/Epoxy Composites

ACS OMEGA(2022)

引用 1|浏览2
暂无评分
摘要
A long-running need in carbon fiber composite production is to ameliorate interfacial adhesion between the polymer and carbon fibers. Here, we present a convenient and feasible strategy for controlling the carbon fiber's surface in a continuous process: syntheses of click-modified silanes via copper(I)-catalyzed azide-alkyne cycloaddition reaction and grafting them onto fiber surfaces which prepare a latent curable platform under mild processes without postmodification. As 1,2,3-triazole moieties from the click reaction were added to the epoxy/ dicyandiamide system, they triggered additional reactions in the later conversion stage; approximately, a 20% increase in the total reaction enthalpy compared to the system with no additives was obtained. We expected the enhanced cross-linking between the surface and matrix to expand the interfacial area, leading to reinforcements on interfacial adhesion and stress-transfer abilities within composites. The merit of the approach is welldemonstrated by conductive atomic force microscopy, showing that the interphase can be extended up to 6-fold when the triazole platform acts as curatives and serve as bridges after the epoxy cure. Consequently, the composite's interfacial shear strength and interlaminar shear strength were increased up to 78 and 72%, respectively. This work affords a reactive platform where a customtailored fiber/matrix interface can be designed by virtue of versatility in clickable reactants.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要