Orbit-Engineered Anisotropic Magnetoresistive Effect for Constructing a Magnetic Sensor with Ultrahigh Sensitivity

ACS applied materials & interfaces(2022)

引用 0|浏览5
暂无评分
摘要
A strong anisotropic magnetoresistance (AMR) effect induced by spin-orbit coupling is the basis for constructing a highly sensitive and reliable magnetic sensor. Presently, effective AMR enhancement in traditional films focuses on the modulation of the lattice or charge degree of freedom, leading to a general AMR ratio below 4%. Here, we demonstrate a different strategy to strengthen the AMR effect by tuning the orbital degree of freedom. By inserting an oxygen-affinitive Hf layer into a Ta/MgO/NiFe/MgO/Ta multilayer film, Fe-O orbital hybridization at the MgO/NiFe interface was modulated to trigger an effective orbital reconfiguration of Fe. In turn, the number of holes in the in-plane symmetric d orbits of Fe increased substantially, facilitating the s-d electron scattering to enhance the AMR ratio to 4.8%. By further micromachining the film into a Wheatstone bridge, we constructed a sensing element that displayed an ultrahigh sensitivity of 2.7 mV/V/Oe and a low noise detectability of 0.8 nT/vHz. These findings help to advance the development of orbit-governed AMR sensors and provide an alternative method for tuning other orbit-related physical effects.
更多
查看译文
关键词
anisotropic magnetoresistance sensor,linear sensitivity,noise,orbital reconfiguration,spin-orbit coupling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要