Directional Exciton-Energy Transport in a Lateral Heteromonolayer of WSe2-MoSe2

ACS NANO(2022)

引用 26|浏览6
暂无评分
摘要
Controlling the direction of exciton-energy flow in two-dimensional (2D) semiconductors is crucial for developing future high-speed optoelectronic devices using excitons as the information carriers. However, intrinsic exciton diffusion in conventional 2D semiconductors is omnidirectional, and efficient exciton-energy transport in a specific direction is difficult to achieve. Here we demonstrate directional exciton-energy transport across the interface in tungsten diselenide (WSe2)-molybdenum diselenide (MoSe2) lateral heterostructures. Unidirectional transport is spontaneously driven by the built-in asymmetry of the exciton-energy landscape with respect to the heterojunction interface. At excitation positions close to the interface, the exciton photoluminescence (PL) intensity was substantially decreased in the WSe2 region and enhanced in the MoSe2 region. In PL excitation spectroscopy, it was confirmed that the observed phenomenon arises from lateral exciton-energy transport from WSe2 to MoSe2. This directional exciton-energy flow in lateral 2D heterostructures can be exploited in future optoelectronic devices.
更多
查看译文
关键词
transition metal dichalcogenides, exciton, energy transport, excitonic device, lateral heterostructure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要