Designer magnetic topological graphene nanoribbons

arxiv(2022)

引用 0|浏览11
暂无评分
摘要
The interplay of magnetism and topology lies at the heart of condensed matter physics, which offers great opportunities to design intrinsic magnetic topological materials hosting a variety of exotic topological quantum states including the quantum anomalous Hall effect (QAHE), axion insulator state, and Majorana bound states. Extending this concept to one-dimension (1D) systems offers additional rich quantum spin physics with great promise for molecular-scale spintronics. Despite recent progress in the discovery of symmetry-protected topological quantum phases in 1D graphene nanoribbons (GNRs), the rational design and realization of magnetic topological GNRs (MT-GNRs) represents a grand challenge, as one must tackle multiple dimensions of complexity including time-reversal symmetry (TRS), spatial symmetry (width, edge, end geometry) and many-electron correlations. Here, we devised a new route involving the real- and reciprocal-space descriptions by unifying the chemists and physicists perspectives, for the design of such MT-GNRs with non-trivial electronic topology and robust magnetic terminal. Classic Clar's rule offers a conceptually qualitative real-space picture to predict the transition from closed-shell to open-shell with terminal magnetism, and band gap reopening with possible non-trivial electronic topology in a series of wave-like GNRs, which are further verified by first principle calculations of band-structure topology in a momentum-space. With the advance of on-surface synthesis and careful design of molecular precursors, we have fabricated these MT-GNRs with observation of topological edge bands, whose terminal pi-magnetism can be directly captured using a single-nickelocene spin sensor. Moreover, the transition from strong anti-ferromagnetic to weak coupling (paramagnetism-like) between terminal spins can be controlled by tuning the length of MT-GNRs.
更多
查看译文
关键词
magnetic topological graphene nanoribbons
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要