All-trans-retinoic acid induces RARB-dependent apoptosis via ROS induction and enhances cisplatin sensitivity by NRF2 downregulation in cholangiocarcinoma cells

ONCOLOGY LETTERS(2022)

引用 6|浏览1
暂无评分
摘要
All-trans-retinoic acid (ATRA) has been clinically used to treat acute promyelocytic leukemia and is being studied to treat other types of cancer; however, the therapeutic role and mechanism of ATRA against cholangiocarcinoma (CCA) remain unclear. The present study investigated the cytotoxic effect and underlying mechanisms of ATRA on CCA cell lines. Cell viability was evaluated by sulforhodamine B assay. Intracellular reactive oxygen species (ROS) levels were assessed by dihydroethidium assay. Apoptosis analysis was performed by flow cytometry. The pathways of apoptotic cell death induction were examined using enzymatic caspase activity assay. Proteins associated with apoptosis were evaluated by western blotting. The effects on gene expression were analyzed by reverse transcription-quantitative PCR analysis. ATRA induced a concentration- and time-dependent toxicity in CCA cells. Furthermore, when the cytotoxicity of ATRA against retinoic acid receptor (RAR)-deficient cells was assessed, it was revealed that ATRA cytotoxicity was RARB-dependent. Following ATRA treatment, there was a significant accumulation of cellular ROS and ATRA-induced ROS generation led to an increase in the expression levels of apoptosis-inducing proteins and intrinsic apoptosis. Pre-treatment with ROS scavengers could diminish the apoptotic effect of ATRA, suggesting that ROS and mitochondria may have an essential role in the induction of apoptosis. Furthermore, following ATRA treatment, an increase in cellular ROS content was associated with suppressing nuclear factor erythroid 2-related factor 2 (NFE2L2 or NRF2) and NRF2-downstream active genes. ATRA also suppressed cisplatin-induced NRF2 expression, suggesting that the enhancement of cisplatin cytotoxicity by ATRA may be associated with the downregulation of NRF2 signaling. In conclusion, the results of the present study demonstrated that ATRA could be repurposed as an alternative drug for CCA therapy.
更多
查看译文
关键词
all-trans-retinoic acid, retinoic acid receptor, cholangiocarcinoma, reactive oxygen species, apoptosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要