Superdiffusive quantum work and adiabatic quantum evolution in finite temperature chaotic Fermi systems

PHYSICAL REVIEW B(2022)

引用 2|浏览5
暂无评分
摘要
We study the full distribution of quantum work in generic, noninteracting, disordered fermionic nanosystems at finite temperature. We derive an analytical determinant formula for the characteristic function of work statistics for quantum quenches starting from a thermal initial state. For work small compared to the thermal energy of the Fermi gas, work distribution is Gaussian, and the variance of work is proportional to the average work, while in the low-temperature or large-work limit, a non-Gaussian distribution with superdiffusive work fluctuations is observed. Similarly, the time dependence of the probability of adiabaticity crosses over from an exponential to a stretched exponential behavior. For large enough average work, the work distribution becomes universal, and depends only on the temperature and the mean work. Apart from initial low-temperature transients, work statistics are well captured by a Markovian energy-space diffusion process of hardcore particles, starting from a thermal initial state. Our findings can be verified by measurements on nanoscale circuits or via single qubit interferometry.
更多
查看译文
关键词
Quantum Thermalization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要