Chrome Extension
WeChat Mini Program
Use on ChatGLM

Radiomics Analysis on [68Ga]Ga-PSMA-11 PET and MRI-ADC for the Prediction of Prostate Cancer ISUP Grades: Preliminary Results of the BIOPSTAGE Trial

CANCERS(2022)

Cited 12|Views46
No score
Abstract
Simple Summary Radiomics analysis is used on magnetic resonance imaging - apparent diffusion coefficient (MRI-ADC) maps and [68Ga]Ga-PSMA-11 PET uptake maps to assess unique tumor traits not visible to the naked eye and predict histology-proven ISUP grades in a cohort of 28 patients. Our study's main goal is to report imaging features that can distinguish patients with low ISUP grades from those with higher grades (ISUP one+) by employing logistic regression statistical models based on MRI-ADC and 68Ga-PSMA data, as well as assess the features' stability under small contouring variations. Our findings reveal that MRI-ADC and [Ga-68]Ga-PSMA-11 PET imaging features-based models are equivalent and complementary for predicting low ISUP grade patients. These models can be employed in broader studies to confirm their ISUP grade prediction ability and eventually impact clinical workflow by reducing overdiagnosis of indolent, early-stage PCa. Prostate cancer (PCa) risk categorization based on clinical/PSA testing results in a substantial number of men being overdiagnosed with indolent, early-stage PCa. Clinically non-significant PCa is characterized as the presence of ISUP grade one, where PCa is found in no more than two prostate biopsy cores.MRI-ADC and [Ga-68]Ga-PSMA-11 PET have been proposed as tools to predict ISUP grade one patients and consequently reduce overdiagnosis. In this study, Radiomics analysis is applied to MRI-ADC and [Ga-68]Ga-PSMA-11 PET maps to quantify tumor characteristics and predict histology-proven ISUP grades. ICC was applied with a threshold of 0.6 to assess the features' stability with variations in contouring. Logistic regression predictive models based on imaging features were trained on 31 lesions to differentiate ISUP grade one patients from ISUP two+ patients. The best model based on [Ga-68]Ga-PSMA-11 PET returned a prediction efficiency of 95% in the training phase and 100% in the test phase whereas the best model based on MRI-ADC had an efficiency of 100% in both phases. Employing both imaging modalities, prediction efficiency was 100% in the training phase and 93% in the test phase. Although our patient cohort was small, it was possible to assess that both imaging modalities add information to the prediction models and show promising results for further investigations.
More
Translated text
Key words
prostate cancer,retrospective studies,MRI-ADC scans,[Ga-68]Ga-PSMA-11 PET,radiomics
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined