Chrome Extension
WeChat Mini Program
Use on ChatGLM

Synthesis and Effect of Conformationally Locked Carbocyclic Guanine Nucleotides on Dynamin

BIOMOLECULES(2022)

Cited 0|Views15
No score
Abstract
Guanine nucleotides can flip between a North and South conformation in the ribose moiety. To test the enzymatic activity of GTPases bound to nucleotides in the two conformations, we generated methanocarba guanine nucleotides in the North or South envelope conformations, i.e., (N)-GTP and (S)-GTP, respectively. With dynamin as a model system, we examined the effects of (N)-GTP and (S)-GTP on dynamin-mediated membrane constriction, an activity essential for endocytosis. Dynamin membrane constriction and fission activity are dependent on GTP binding and hydrolysis, but the effect of the conformational state of the GTP nucleotide on dynamin activity is not known. After reconstituting dynamin-mediated lipid tubulation and membrane constriction in vitro, we observed via cryo-electron microscopy (cryo-EM) that (N)-GTP, but not (S)-GTP, enables the constriction of dynamin-decorated lipid tubules. These findings suggest that the activity of dynamin is dependent on the conformational state of the GTP nucleotide. However, a survey of nucleotide ribose conformations associated with dynamin structures in nature shows almost exclusively the (S)-conformation. The explanation for this mismatch of (N) vs. (S) required for GTP analogues in a dynamin-mediated process will be addressed in future studies.
More
Translated text
Key words
conformationally locked,methanocarba,guanine nucleotide,dynamin,GTPase,membrane fission
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined