Chrome Extension
WeChat Mini Program
Use on ChatGLM

Alterations of the Sympathoadrenal Axis Related to the Development of Alzheimer's Disease in the 3xTg Mouse Model

BIOLOGY-BASEL(2022)

Cited 0|Views14
No score
Abstract
Simple Summary Alzheimer's disease (AD), the most common form of dementia, is becoming a global health problem and public health priority. In the advanced stages of AD, besides the initial cognitive symptoms, behavioral problems, particularly agitation and aggressiveness, become prevalent in AD patients. These non-cognitive symptoms could be related to alterations in the regulatory mechanism of the sympathetic nervous system. In this study, we used chromaffin cells (CCs) isolated from the adrenal gland of 3xTg (an AD mouse model) mice to characterize potential alterations in the regulation of the responses to stress mediated by the secretion of catecholamines. We compared these regulatory mechanisms in mice at two different ages: in 2-month-old mice, where no AD symptoms were observed, and in mice over 12 months of age, when AD-related cognitive impairment related was fully established. We found that the modulation of neurotransmitter release was stronger in CCs isolated from the adrenal medulla of 3xTg mice older than 12 months of age, an effect likely related to disease progression as it was not observed in CCs from age-matched wild-type (WT) mice. This enhanced modulation leads to an increased catecholamine release in response to stressful situations, which may explain the non-cognitive behavioral problems found in AD patients. Alzheimer's disease (AD), the most common form of dementia, is becoming a global health problem and public health priority. In the advanced stages of AD, besides the initial cognitive symptoms, behavioral problems, particularly agitation and aggressiveness, become prevalent in AD patients. These non-cognitive symptoms could be related to a noradrenergic overactivation. In this study, we used chromaffin cells (CCs) isolated from the adrenal gland of 3xTg AD model mice to characterize potential alterations in the autocrine-paracrine modulation of voltage-dependent calcium channels (VDCCs), which in turn serve to regulate the release of catecholamines. We used mice at the presymptomatic stage (2 months) and mice over 12 months of age, when AD-related cognitive impairment was fully established. We found that the modulation of inward currents through VDCCs induced by extracellular ATP was stronger in CCs isolated from the adrenal medulla of 3xTg mice older than 12 months of age, an effect likely related to disease progression as it was not observed in CCs from age-matched WT mice. This enhanced modulation leads to increased catecholamine release in response to stressful situations, which may explain the non-cognitive behavioral problems found in AD patients.
More
Translated text
Key words
Alzheimer's disease,3xTg mouse model,sympathoadrenal axis,chromaffin cell,autocrine-paracrine modulation,voltage-dependent calcium channels
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined