CDYL1-dependent decrease in lysine crotonylation at DNA double-strand break sites functionally uncouples transcriptional silencing and repair

Molecular Cell(2022)

引用 10|浏览2
暂无评分
摘要
Previously, we showed that CDYL1 is recruited to DNA double-strand breaks (DSBs) to promote homologous recombination (HR) repair and foster transcriptional silencing. However, how CDYL1 elicits DSB-induced silencing is not fully understood. Here, we identify a CDYL1-dependent local decrease in the transcriptionally active marks histone lysine crotonylation (Kcr) and crotonylated lysine 9 of H3 (H3K9cr) at AsiSI-induced DSBs, which correlates with transcriptional silencing. Mechanistically, we reveal that CDYL1 crotonyl-CoA hydratase activity counteracts Kcr and H3K9cr at DSB sites, which triggers the eviction of the transcription elongation factor ENL and fosters transcriptional silencing. Furthermore, genetic inhibition of CDYL1 hydratase activity blocks the reduction in H3K9cr and alleviates DSB-induced silencing, whereas HR efficiency unexpectedly remains intact. Therefore, our results functionally uncouple the repair and silencing activity of CDYL1 at DSBs. In a broader context, we address a long-standing question concerning the functional relationship between HR repair and DSB-induced silencing, suggesting that they may occur independently.
更多
查看译文
关键词
CDYL1,lysine crotonylation,H3K9cr,double-strand break,homologous recombination,ENL,transcriptional repression,lysine acetylation,NHEJ
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要