谷歌浏览器插件
订阅小程序
在清言上使用

G-CSF augments the neuroprotective effect of conditioned medium of dental pulp stem cells against hypoxic neural injury in SH-SY5Y cells

IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES(2021)

引用 4|浏览4
暂无评分
摘要
Objective(s): Dental pulp stem cells (DPSCs) can differentiate into functional neurons and have the potential for cell therapy in neurological diseases. Granulocyte colony-stimulating factor (G-CSF) is a glycoprotein family shown neuroprotective effect in models of nerve damage. we evaluated the protective effects of G-CSF, conditioned media from DPSCs (DPSCs-CM) and conditioned media from transfected DPSCs with plasmid encoding G-CSF (DPSC-CMT) on SH-SY5Y exposed to CoCl2 as a model of hypoxia-induced neural damage. Materials and Methods: SH-SY5Y exposed to CoCl2 were treated with DPSCs-CM, G-CSF, simultaneous combination of DPSCs-CM and G-CSF and finally DPSC-CMT. Cell viability and apoptosis were determined by resazurin (or lactate dehydrogenase (LDH) assay alternatively) and propidium iodide (PI) staining. Western blot analysis was performed to detect changes in apoptotic protein levels. The interleukin-6 and interleukin-10 IL6/IL10 levels were measured with Enzyme-Linked Immunosorbent Assay (ELISA). Results: DPSCs-CM and G-CSF were able to significantly protect SH-SY5Y against neural cell damage caused by CoCl2 according to resazurin and LDH analysis. Also, the percentage of apoptotic cells decreased when SH-SY5Y were treated with DPSCs-CM and G-CSF simultaneously. After transfection of DPSCs with G-CSF plasmid, DPSC-CMT could significantly improve the protection. The amount of beta-catenin, cleaved PARP and caspase-3 were significantly decreased and the expression of survivin was considerably increased when hypoxic SH-SY5Y treated with DPSCs-CM plus G-CSF according to Western blot. Decreased level of IL-6/IL-10, which exposed to CoCl2, after treatment with DPSCs-CM indicated the suppression of inflammatory mediators. Conclusion: Combination therapy of G-CSF and DPSCs-CM improved the protective activity.
更多
查看译文
关键词
Cobaltous chloride,Granulocyte colony-stimulating factor,Hypoxia,Stem cells,Transfection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要