Saturation-pulse prepared heart-rate independent inversion-recovery (SAPPHIRE) biventricular T1 mapping: inter-field strength, head-to-head comparison of diastolic, systolic and dark-blood measurements

user-5dd528d2530c701191bf1b49(2022)

引用 0|浏览0
暂无评分
摘要
Background To assess the feasibility of biventricular SAPPHIRE T 1 mapping in vivo across field strengths using diastolic, systolic and dark-blood (DB) approaches. Methods 10 healthy volunteers underwent same-day non-contrast cardiovascular magnetic resonance at 1.5 Tesla (T) and 3 T. Left and right ventricular (LV, RV) T 1 mapping was performed in the basal, mid and apical short axis using 4-variants of SAPPHIRE: diastolic, systolic, 0th and 2nd order motion-sensitized DB and conventional modified Look-Locker inversion recovery (MOLLI). Results LV global myocardial T 1 times (1.5 T then 3 T results) were significantly longer by diastolic SAPPHIRE (1283 ± 11|1600 ± 17 ms) than any of the other SAPPHIRE variants: systolic (1239 ± 9|1595 ± 13 ms), 0th order DB (1241 ± 10|1596 ± 12) and 2nd order DB (1251 ± 11|1560 ± 20 ms, all p < 0.05). In the mid septum MOLLI and diastolic SAPPHIRE exhibited significant T 1 signal contamination (longer T 1 ) at the blood-myocardial interface not seen with the other 3 SAPPHIRE variants (all p < 0.025). Additionally, systolic, 0th order and 2nd order DB SAPPHIRE showed narrower dispersion of myocardial T 1 times across the mid septum when compared to diastolic SAPPHIRE (interquartile ranges respectively: 25 ms, 71 ms, 73 ms vs 143 ms, all p < 0.05). RV T 1 mapping was achievable using systolic, 0th and 2nd order DB SAPPHIRE but not with MOLLI or diastolic SAPPHIRE. All 4 SAPPHIRE variants showed excellent re-read reproducibility (intraclass correlation coefficients 0.953 to 0.996). Conclusion These small-scale preliminary healthy volunteer data suggest that DB SAPPHIRE has the potential to reduce partial volume effects at the blood-myocardial interface, and that systolic SAPPHIRE could be a feasible solution for right ventricular T 1 mapping. Further work is needed to understand the robustness of these sequences and their potential clinical utility.
更多
查看译文
关键词
T1 mapping, Cardiovascular magnetic resonance, SAPPHIRE, MOLLI
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要