谷歌Chrome浏览器插件
订阅小程序
在清言上使用

High-cytocompatible semi-IPN bio-ink with wide molecular weight distribution for extrusion 3D bioprinting

SCIENTIFIC REPORTS(2022)

引用 0|浏览6
暂无评分
摘要
The development of 3D printing has recently attracted significant attention on constructing complex three-dimensional physiological microenvironments. However, it is very challenging to provide a bio-ink with cell-harmless and high mold accuracy during extrusion in 3D printing. To overcome this issue, a technique improving the shear-thinning performance of semi-IPN bio-ink, which is universally applicable to all alginate/gelatin-based materials, was developed. Semi-IPN bio-ink prepared by cyclic heating–cooling treatment in this study can reduce the cell damage without sacrificing the accuracy of the scaffolds for its excellent shear-thinning performance. A more than 15% increase in post-printing Cell viability verified the feasibility of the strategy. Moreover, the bio-ink with low molecular weight and wide molecular weight distribution also promoted a uniform cell distribution and cell proliferation in clusters. Overall, this strategy revealed the effects of molecular parameters of semi-IPN bio-inks on printing performance, and the cell activity was studied and it could be widely applicable to construct the simulated extracellular matrix with various bio-inks.
更多
查看译文
关键词
Biomaterials – cells,Biomedical engineering,Biomedical materials,Tissue engineering,Tissues,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要