Microparticles: biogenesis, characteristics and intervention therapy for cancers in preclinical and clinical research

Journal of Nanobiotechnology(2022)

Cited 12|Views28
No score
Abstract
Extracellular vesicles (EVs), spherical biological vesicles, mainly contain nucleic acids, proteins, lipids and metabolites for biological information transfer between cells. Microparticles (MPs), a subtype of EVs, directly emerge from plasma membranes, and have gained interest in recent years. Specific cell stimulation conditions, such as ultraviolet and X-rays irradiation, can induce the release of MPs, which are endowed with unique antitumor functionalities, either for therapeutic vaccines or as direct antitumor agents. Moreover, the size of MPs (100–1000 nm) and their spherical structures surrounded by a lipid bilayer membrane allow MPs to function as delivery vectors for bioactive antitumor compounds, with favorable phamacokinetic behavior, immunostimulatory activity and biological function, without inherent carrier-specific toxic side effects. In this review, the mechanisms underlying MP biogenesis, factors that influence MP production, properties of MP membranes, size, composition and isolation methods of MPs are discussed. Additionally, the applications and mechanisms of action of MPs, as well as the main hurdles for their applications in cancer management, are introduced.
More
Translated text
Key words
Drug delivery,Extracellular vesicles,Microparticles,Cancer treatment,Immunotherapy
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined