Phonon and Exciton Properties between WS2 and MoS2 Layers via Inversion Heterostructure Engineering

ACS APPLIED MATERIALS & INTERFACES(2022)

引用 1|浏览14
暂无评分
摘要
Recently, two-dimensional (2D) van der Waals heterostructures (vdWHs) have exhibited emergent electronic and optical properties due to their peculiar phonons and excitons, which lay the foundation for the development of photoelectronic devices. The dielectric environment plays an important role in the interlayer coupling of vdWHs. Here, we studied the interlayer and extra-layer dielectric effects on phonon and exciton properties in WS2/MoS2 and MoS2/WS2 vdWHs by Raman and photoluminescence (PL) spectroscopy. The ultralow frequency (ULF) Raman modes are insensitive to atomic arrangement at the interface between 1LW and 1LM and dielectric environments of neighboring materials, and the layer breathing mode (LBM) frequency follows that of WS2. The shift of high-frequency (HF) Raman modes is attributable to interlayer dielectric screening and charge transfer effects. Furthermore, the energy of interlayer coupling exciton peak I is insensitive to atomic arrangement at the interface between 1LW and 1LM and its energy follows that of MoS2, but the slight intensity difference in inversion vdWHs means that the substrate's dielectric properties may induce doping on the bottom layer. This paper provides fundamental understanding of phonon and exciton properties of such artificially formed vdWHs structures, which is important for new insights into manipulating the performances of potential devices. KEYWORDS: WS2/MoS2 vdWH, MoS2/WS2 vdWH, Raman spectroscopy, PL spectroscopy, interlayer coupling, dielectric effects
更多
查看译文
关键词
WS2, MoS(2 )vdWH, MoS2, WS2 vdWH, Raman spectroscopy, PL spectroscopy, interlayer coupling, dielectric effects
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要