A bayesian machine learning approach for estimating heterogeneous survivor causal effects: applications to a critical care trial

ANNALS OF APPLIED STATISTICS(2024)

引用 0|浏览1
暂无评分
摘要
Assessing heterogeneity in the effects of treatments has become increasingly popular in the field of causal inference and carries important implications for clinical decision-making. While extensive literature exists for studying treatment effect heterogeneity when outcomes are fully observed, there has been limited development in tools for estimating heterogeneous causal effects when patient-centered outcomes are truncated by a terminal event, such as death. Due to mortality occurring during study follow-up, the outcomes of interest are unobservable, undefined, or not fully observed for many participants in which case principal stratification is an appealing framework to draw valid causal conclusions. Motivated by the Acute Respiratory Distress Syntrial, we developed a flexible Bayesian machine learning approach to estimate the average causal effect and heterogeneous causal effects among the always-survivors stratum when clinical outcomes are subject to truncation. We adopted Bayesian additive regression trees (BART) to flexibly specify separate mean models for the potential outcomes and latent stratum membership. In the analysis of the ARMA trial, we found that the low tidal volume treatment had an overall benefit for participants sustaining acute lung injuries on the outcome of time to returning home but substantial heterogeneity in treatment effects among the always-survivors, driven most strongly by biologic sex and the alveolar-arterial oxygen gradient at baseline (a physiologic measure of lung function and degree of hypoxemia). These findings illustrate how the proposed methodology could guide the prognostic enrichment of future trials in the field.
更多
查看译文
关键词
Acute lung injury,Bayesian additive regression trees,causal inference,heterogeneity,of treatment effects,principal stratification,truncation by death
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要