Decoding hexanitrobenzene (HNB) and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) as two distinctive energetic nitrobenzene compounds by machine learning

PHYSICAL CHEMISTRY CHEMICAL PHYSICS(2022)

引用 8|浏览6
暂无评分
摘要
Energetic materials (EMs) are a group of special energy materials, and it is generally full of safety risks and generally costs much to create new EMs. Thus, machine learning (ML)-aided discovery becomes highly desired for EMs, as ML is good at risk and cost reduction. This work decodes hexanitrobenzene (HNB) and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) as two distinctive energetic nitrobenzene compounds by ML, in combination with theoretical calculations. Based on a series of highly accurate models of density, heat of formation, bond dissociation energy and molecular flatness, the ML predictions show that HNB is the most energetic among similar to 370 000 000 single benzene ring-containing compounds, while TATB possesses a moderate energy content and very high safety, as determined experimentally. This work exhibits the significant power of ML and presents an instructive procedure for using it in the field of EMs. The ML-aided design and highly efficient synthesis and fabrication combined strategy is expected to accelerate the discovery of new EMs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要