Fibroblast-Secreted Phosphoprotein 1 Mediates Extracellular Matrix Deposition and Inhibits Smooth Muscle Cell Contractility in Marfan Syndrome Aortic Aneurysm

Journal of cardiovascular translational research(2022)

Cited 1|Views12
No score
Abstract
Fibrillin 1 (Fbn1) mutation causes Marfan syndrome (MFS) with thoracic aortic aneurysm (TAA) as the main complication. The mechanisms for extracellular matrix (ECM) homeostasis disruption in MFS TAA are unclear. Here, we found ECM-related gene secreted phosphoprotein 1 (Spp1) increased in Fbn1 C1041G/+ mice using transcriptome sequencing and a distinct fibroblast subcluster with Spp1 as the strongest marker was identified with analysis of the MFS mouse aortic single-cell sequencing dataset. Immunostaining confirmed elevated Spp1 in adventitial fibroblasts, and Spp1 might regulate fibroblast and smooth muscle cell (SMC) communication primarily through Itga8/Itgb1. Then, we observed Spp1 reduced contractile genes Acta2 and Tagln expression in SMCs and increased collagen expression in fibroblasts, which might contribute to TAA development. Finally, we also found elevated SPP1 plasma level was associated with an increased risk of TAA in patients. Therefore, SPP1 may serve as a biomarker and therapeutic target for TAA. Graphical abstract
More
Translated text
Key words
Aortic aneurysm,Extracellular matrix,Fibroblast,Marfan syndrome,Secreted phosphoprotein 1
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined