A route towards metal-free electrical cables via carbon nanotube wires

Carbon Trends(2022)

Cited 3|Views12
No score
Abstract
Carbon nanotubes (CNTs) have unique properties with promise to outperform the electrical characteristics of bulk copper, giving rise to its primary driver for use in electronic devices. The challenge still hindering their full exploitation stems from an inability to manufacture them to long lengths, resulting in a requirement to align and entwine them into a yarn or wire. There have been several methods presented in achieving this, however, the common disadvantage has been that they are only applicable to specific types and morphologies of CNTs. In the work reported here, using electrospinning as a universally applicable route for any CNT type, we re-engineer and optimise the various formulation, fabrication and processing steps required to manufacture CNT wires. Through a series of investigations using a materials agnostic approach, we experimentally probe the choice of solvent, surfactant and thermal treatment temperature of the CNT inks, demonstrating the CNT-type optimum using a range of commercially available single- double- and multiwalled CNTs. Finally, this allowed us to develop and probe an electrical conditioning process to further enhance the electrical performance, achieving the highest reported un-doped electrical conductivity of 36,000 S⋅m− 1 for electrospun CNT wires, or a specific conductivity of 0.2×106S·m−1/g·cm−3.
More
Translated text
Key words
Carbon nanotubes,Wires,Electrospinning,Solvent,Surfactant,Conductivity,Conditioning
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined