Chrome Extension
WeChat Mini Program
Use on ChatGLM

Thalamocortical functional connectivity in infants with prenatal opioid exposure correlates with severity of neonatal opioid withdrawal syndrome

Neuroradiology(2022)

Cited 15|Views7
No score
Abstract
Purpose Prenatal opioid exposure (POE) is a growing public health concern due to its associated adverse outcomes including neonatal opioid withdrawal syndrome (NOWS). The aim of this study was to assess alterations in thalamic functional connectivity in neonates with POE using resting-state functional magnetic resonance imaging (rs-fMRI) and identify whether these altered connectivity measures were associated with NOWS severity. Methods In this prospective, IRB-approved study, we performed rs-fMRI in 19 infants with POE and 20 healthy control infants without POE. Following standard pre-processing, we performed seed-based functional connectivity analysis with the right and left thalamus as the regions of interest. We performed post hoc analysis in the prenatal opioid exposure group to identify associations of altered thalamocortical connectivity with severity of NOWS. P value of < .05 was considered statistically significant. Results There were several regions of significantly altered thalamic to cortical functional connectivity in infants with POE compared to the healthy infants. Distinct regions of thalamocortical functional connectivity correlated with maximum modified Finnegan score. Association between thalamocortical connectivity and severity of NOWS was nominally modified by maternal psychological conditions and polysubstance use. Conclusion Our findings reveal prenatal opioid exposure-related alterations in thalamic functional connectivity in the infant brain that are correlated with severity of NOWS. Future studies may benefit from evaluation of thalamocortical resting state functional connectivity in infants with POE to help stratify risk of long term neurodevelopmental outcomes.
More
Translated text
Key words
NOWS, NAS, Rs-fMRI, Brain development, Prenatal opioid exposure, Magnetic resonance imaging
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined