Tensile Properties and Microstructure Evolutions of Low-Density Duplex Fe-12Mn-7Al-0.2C-0.6Si Steel

MATERIALS(2022)

引用 3|浏览8
暂无评分
摘要
An austenite-ferrite duplex low-density steel (Fe-12Mn-7Al-0.2C-0.6Si, wt%) was designed and fabricated by cold rolling and annealing at different temperatures. The tensile properties, microstructure evolution, deformation mechanism and stacking fault energy (SFE) of the steel were systemically investigated at ambient temperature. Results show two phases of fine equiaxed austenite and coarse band-like delta-ferrite in the microstructure of the steel. With increasing annealing temperature, the yield and tensile strengths decrease while the total elongation increases. At initial strains, the deformation is mainly concentrated in the fine austenite and grain boundaries of the coarse delta-ferrite, and the interior of the coarse delta-ferrite gradually deforms with further increase in the strain to 0.3. No twinning-induced plasticity (TWIP) or transformation-induced plasticity (TRIP) occurred during the tensile deformation. Considering element segregation and two-phase proportion, the chemical composition of austenite was measured more precisely. The SFE of the austenite is 39.7 mJ/m(2), and the critical stress required to produce deformation twins is significantly higher than the maximum flow stress of the steel.
更多
查看译文
关键词
Fe-Mn-Al-C steel, dualphase steel, lowdensity steel, delta ferrite, stacking fault energy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要