Biophysical characterization and in vitro imaging of carbonized MOFs

Biochemical and Biophysical Research Communications(2022)

引用 1|浏览3
暂无评分
摘要
Nanoparticles have been widely used in biological imaging and treatments of various diseases, especially for studies of tumors, due to their high efficiency in drug delivery and many other functions. Metal-organic frameworks have been an important research area in recent years because of advantages such as large apertures, adjustable structural compositions, adjustable sizes, multifunctionality, high drug loading, good biocompatibility and so on, and they show promise as multifunctional drug carriers. In this study, a carbonized MOF with photothermal therapeutic potential and dual-mode imaging capability was prepared. The biophysical properties of MIL-100 and C-MIL nanoparticles were determined, such as particle size, zeta potential and saturation magnetization strength. CCK-8 cell assays and mouse HE sections confirmed that C-MIL nanoparticles have good in vitro and in vivo biocompatibility. The solution temperature of C-MIL nanoparticles reached 58.1 °C during sustained laser irradiation at 808 nm, which confirmed the photothermal potential of the nanoparticles. Moreover, in biological imaging, C-MIL nanoparticles showed the ability to support in vitro nuclear magnetic and photoacoustic dual-mode imaging. C-MIL nanoparticles provide new options for tumor therapy, drug delivery and biological imaging.
更多
查看译文
关键词
Metal organic frameworks,Carbonized,Biophysical,Photothermal therapy,Biological imaging
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要