Translational recoding by chemical modification of non-AUG start codon ribonucleotide bases.

Science advances(2022)

引用 2|浏览15
暂无评分
摘要
In contrast to prokaryotes wherein GUG and UUG are permissive start codons, initiation frequencies from non-AUG codons are generally low in eukaryotes, with CUG being considered as strongest. Here, we report that combined 5-cytosine methylation (5mC) and pseudouridylation (Ψ) of near-cognate non-AUG start codons convert GUG and UUG initiation strongly favored over CUG initiation in eukaryotic translation under a certain context. This prokaryotic-like preference is attributed to enhanced NUG initiation by Ψ in the second base and reduced CUG initiation by 5mC in the first base. Molecular dynamics simulation analysis of tRNAiMet anticodon base pairing to the modified codons demonstrates that Ψ universally raises the affinity of codon:anticodon pairing within the ribosomal preinitiation complex through partially mitigating discrimination against non-AUG codons imposed by eukaryotic initiation factor 1. We propose that translational control by chemical modifications of start codon bases can offer a new layer of proteome diversity regulation and therapeutic mRNA technology.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要