Utilization of Artificial Intelligence-based Intracranial Hemorrhage Detection on Emergent Noncontrast CT Images in Clinical Workflow

RADIOLOGY-ARTIFICIAL INTELLIGENCE(2022)

引用 24|浏览5
暂无评分
摘要
Authors implemented an artificial intelligence (AI)-based detection tool for intracranial hemorrhage (ICH) on noncontrast CT images into an emergent workflow, evaluated its diagnostic performance, and assessed clinical workflow metrics compared with pre-AI implementation. The finalized radiology report constituted the ground truth for the analysis, and CT examinations (n = 4450) before and after implementation were retrieved using various keywords for ICH. Diagnostic performance was assessed, and mean values with their respective 95% CIs were reported to compare workflow metrics (report turnaround time, communication time of a finding, consultation time of another specialty, and turnaround time in the emergency department). Although practicable diagnostic performance was observed for overall ICH detection with 93.0% diagnostic accuracy, 87.2% sensitivity, and 97.8% negative predictive value, the tool yielded lower detection rates for specific subtypes of ICH (eg, 69.2% [74 of 107] for subdural hemorrhage and 77.4% [24 of 31] for acute subarachnoid hemorrhage). Common false-positive findings included postoperative and postischemic defects (23.6%, 37 of 157), artifacts (19.7%, 31 of 157), and tumors (15.3%, 24 of 157). Although workflow metrics such as communicating a critical finding (70 minutes [95% CI: 54, 85] vs 63 minutes [95% CI: 55, 71]) were on average reduced after implementation, future efforts are necessary to streamline the workflow all along the workflow chain. It is crucial to define a clear framework and recognize limitations as AI tools are only as reliable as the environment in which they are deployed. (C)RSNA, 2022
更多
查看译文
关键词
CT, CNS, Stroke, Diagnosis, Classification, Application Domain
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要