Kinetics and mechanism analysis on self-decay of airborne bacteria:biological and physical decay under different temperature

Science of The Total Environment(2022)

引用 4|浏览14
暂无评分
摘要
Bioaerosol as an important medium has aroused widespread concern on its potential hazards in disease transmission and environment biosafety. However, little is known about the duration and self-decay of airborne bacteria in the atmosphere environment. Further, the self-decay process is proposed to include biological-decay and physical-decay. At present, there are many reports on the bacteria apoptosis mechanism and airborne particle migration. However, few studies focus on self-decay during the physical movement of airborne bacteria. The present study investigated self-decay laws and efficiencies of airborne bacteria in the sealed reactor under room temperature (18 ± 2 °C, RT) and low temperature (3 ± 2 °C, LT). The self-decay rate constants of 0.0089, 0.0133, 0.0092, and 0.0122 min−1 were obtained under RT-E. coli, LT-E. coli, RT-S. aureus and LT-S. aureus, respectively. There was no significant difference between the self-decay efficiency of gram-negative and gram-positive bacteria under the same conditions. Nevertheless, gram-negative bacteria were more sensitive to temperature change compared with gram-positive bacteria, where the self-decay efficiency of gram-negative under LT was 49% higher than that under RT, and the value of gram-positive was 32% at the same condition. Furthermore, the laws of biological-decay and physical-decay conformed to the first-order kinetic model by theoretical derivation. Biological-decay accounted for 59.5% at RT and 88.5% at LT among self-decay, which is mainly caused by energy absorption, environmental stress, and bacterial structure changes. Physical-decay mainly caused by gravity settlement accounting for 40% at RT and 10% at LT among self-decay, approximately. Meanwhile, the influence of environmental factors on self-decay was mainly reflected in the biological-decay process. Overall, it is of great significance for clarifying the changing laws of bioaerosol and controlling the transmission of airborne bacteria.
更多
查看译文
关键词
Bioaerosol,Gram-negative,Gran-positive,Attenuation efficiency,Biological contribution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要