Nanoemulsion-directed growth of MOFs with versatile architectures for the heterogeneous regeneration of coenzymes

NATURE COMMUNICATIONS(2022)

引用 32|浏览22
暂无评分
摘要
As one of the most appealing strategies for the synthesis of nanomaterials with various architectures, emulsion-directed methods have been rarely used to control the structure of metal-organic frameworks (MOFs). Herein, we report a versatile salt-assisted nanoemulsion-guided assembly to achieve continuous architecture transition of hierarchical Zr-based MOFs. The morphology of nanoemulsion can be facilely regulated by tuning the feed ratio of a dual-surfactant and the introduced amount of compatible hydrophobic compounds, which directs the assembly of MOFs with various architectures such as bowl-like mesoporous particle, dendritic nanospheres, walnut-shaped particles, crumpled nanosheets and nanodisks. The developed dendritic nanospheres with highly open and large mesochannels is successfully used as matrix for the co-immobilization of coenzymes and corresponding enzymes to realize the in situ heterogeneous regeneration of NAD + . This strategy is expected to pave a way for exploring sophisticated hierarchical MOFs which can be competent for practical applications with bulk molecules involved.
更多
查看译文
关键词
Biocatalysis,Metal–organic frameworks,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要