Rapid Identification of Drug-Resistant Tuberculosis Genes Using Direct PCR Amplification and Oxford Nanopore Technology Sequencing.

Kaishun Zhao,Chunlin Tu, Wei Chen,Haiying Liang, Wenjing Zhang, Yilei Wang,Ye Jin,Jianrong Hu,Yameng Sun, Jun Xu,Yanfang Yu

The Canadian journal of infectious diseases & medical microbiology = Journal canadien des maladies infectieuses et de la microbiologie medicale(2022)

引用 2|浏览9
暂无评分
摘要
antimicrobial resistance has been continually reported and is a major public health issue worldwide. Rapid prediction of drug resistance is important for selecting appropriate antibiotic treatments, which significantly increases cure rates. Gene sequencing technology has proven to be a powerful strategy for identifying relevant drug resistance information. This study established a sequencing method and bioinformatics pipeline for resistance gene analysis using an Oxford Nanopore Technologies sequencer. The pipeline was validated by Sanger sequencing and exhibited 100% concordance with the identified variants. Turnaround time for the nanopore sequencing workflow was approximately 12 h, facilitating drug resistance prediction several weeks earlier than that of traditional phenotype drug susceptibility testing. This study produced a customized gene panel assay for rapid bacterial identification via nanopore sequencing, which improves the timeliness of diagnoses and provides a reliable method that may have clinical application.
更多
查看译文
关键词
direct pcr amplification,oxford nanopore technology,drug-resistant
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要