Mapping SP-C co-chaperone binding sites reveals molecular consequences of disease-causing mutations on protein maturation

NATURE COMMUNICATIONS(2022)

Cited 6|Views4
No score
Abstract
BiP co-chaperones ERdj4, ERdj5, and GRP170 associate in cells with peptides predicted to be aggregation prone. Here, extending these findings to a full-length protein, we examine two Interstitial Lung Disease-associated mutants (ILD) of surfactant protein C (SP-C). The TANGO algorithm, which identifies sequences prone to formation of β strand aggregates, found three such regions in SP-C: the N-terminal transmembrane (TM) domain and two sites in the intermolecular chaperone BRICHOS domain. We show the ILD mutants disrupt di-sulfide bond formation in the BRICHOS domain and expose the aggregation-prone peptides leading to binding of ERdj4, ERdj5, and GRP170. The destabilized mutant BRICHOS domain fails to properly insert its TM region in the ER membrane, exposing part of the N-terminal TM domain site. Our studies with ILD-associated mutant proteins provide insights into the specificity of ERdj4, ERdj5, and GRP170, identify context-dependent differences in their binding, and reveal molecular consequences of disease-associated mutants on folding.
More
Translated text
Key words
Chaperones,Mechanisms of disease,Protein aggregation,Science,Humanities and Social Sciences,multidisciplinary
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined