Chrome Extension
WeChat Mini Program
Use on ChatGLM

Glutathione-dependent redox balance characterizes the distinct metabolic properties of follicular and marginal zone B cells

NATURE COMMUNICATIONS(2022)

Cited 10|Views32
No score
Abstract
The metabolic principles underlying the differences between follicular and marginal zone B cells (FoB and MZB, respectively) are not well understood. Here we show, by studying mice with B cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that glutathione synthesis affects homeostasis and differentiation of MZB to a larger extent than FoB, while glutathione-dependent redox control contributes to the metabolic dependencies of FoB. Specifically, Gclc ablation in FoB induces metabolic features of wild-type MZB such as increased ATP levels, glucose metabolism, mTOR activation, and protein synthesis. Furthermore, Gclc-deficient FoB have a block in the mitochondrial electron transport chain (ETC) due to diminished complex I and II activity and thereby accumulate the tricarboxylic acid cycle metabolite succinate. Finally, Gclc deficiency hampers FoB activation and antibody responses in vitro and in vivo, and induces susceptibility to viral infections. Our results thus suggest that Gclc is required to ensure the development of MZB, the mitochondrial ETC integrity in FoB, and the efficacy of antiviral humoral immunity. Follicular and marginal zone B (FoB and MZB, respectively) cells have divergent metabolic characteristics. Here the authors show that deficiency of glutamate cysteine ligase (Gclc), the enzyme for glutathione synthesis, differentially impacts FoB and MZB homeostasis, while specifically impeding FoB activation and downstream antiviral immunity.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined