Achieving Partial Nitrification-Anammox Process Dependent on Microalgal-Bacterial Consortia in a Photosequencing Batch Reactor

FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY(2022)

引用 1|浏览6
暂无评分
摘要
Partial nitrification coupled with anammox (PN/A) process is an energy-efficient approach for nitrogen removal from low C/N wastewater. In this study, PN/A was achieved with optimal oxygen supply from a green microalga, Chlorella sorokiniana. The PN process was first initiated within 35 days, and the following algae-intensified PN then reached the steady state within the next 32 days. The dissolved oxygen (DO) concentration was gradually maintained at 0.6 mg L-1 via adjusting the photoperiod to 6-h light/18-h dark cycles, when the accumulation ratio of NO2--N and the removal ratio of NH4+-N were both more than 90%. The nitrogen removal capability of anammox was acclimated via elevating the individual effluent NH4+-N and NO2--N levels from 100 to 200, to 300 mg L-1. After acclimation, the removal rates of NH4+-N and total nitrogen (TN) reached more than 70 and 80%, respectively, and almost all the NO2--N was removed. Then, the algae-intensified PN/A, algammox biofilm system, was successfully started up. When the NH4+-N level increased from 100 to 300 mg L-1, the TN removal varied between 78 and 82%. In the photosequencing bioreactor, C. sorokiniana, ammonia-oxidizing bacteria (AOB), and anammox coexisted with an illumination of 200 mu mol m(-2) s(-1) and a 6-h light/18-h dark cycles. The DO levels ranged between 0.4 and 0.5 mg L-1. In addition, the microbial community analysis by Illumina MiSeq sequencing showed that the dominant functional bacteria in the algae-intensified PN/A reactors included Nitrosomonas (AOB) and Candidatus Brocadia (anammox), while Nitrospira and Nitrobacter (nitrite oxidizing bacteria), together with Denitratisoma (denitrifier) were largely inhibited. Further studies are required to optimize the microalgal-bacterial consortia system to achieve superior nitrogen removal rates under controllable conditions.
更多
查看译文
关键词
biological nitrogen removal, microalgal-bacterial consortia, photosequencing batch reactor, microbial community, anammox, algammox biofilm system
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要