Highly graphited carbon-coated FeTiO3 nanosheets in situ derived from MXene: an efficient bifunctional catalyst for Zn-air batteries

DALTON TRANSACTIONS(2022)

引用 2|浏览16
暂无评分
摘要
Developing high-efficiency and low-cost catalysts for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is of great significance for the commercialization of rechargeable metal-air batteries. Herein, we demonstrated the construction of graphited carbon-coated FeTiO3 (FeTiO3@C) via in situ annealing Ti3C2Tx nanosheets in a rusted-reactor and its efficient bifunctional activity for rechargeable Zn-air batteries (RZABs). The electron-transport dynamics of FeTiO3@C can be improved by using highly conductive graphited carbon derived from Ti3C2Tx. The FeTiO3@C catalyst annealed at 500 degrees C exhibits excellent OER and ORR activities. Specifically, FeTiO3@C shows a low overpotential of 323 mV at 10 mA cm(-2) and a small Tafel slope of 53 mV dec(-1) towards the alkaline OER. During the OER process, FeTiO3@C can be partially converted into highly active iron oxyhydroxide via in situ electrochemical reconstruction, which serves as the active species. After being assembled to RZABs, it shows an open-circuit potential of 1.33 V, a high trip efficiency of 63.4% and long-time cycling stability. This work can provide a new avenue for developing bifunctional electrocatalysts for RZABs used in portable devices.
更多
查看译文
关键词
nanosheets,efficient bifunctional catalyst,mxene,zn–air,carbon-coated
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要