Re-engineering of CUP1 promoter and Cup2/Ace1 transactivator to convert Saccharomyces cerevisiae into a whole-cell eukaryotic biosensor capable of detecting 10 nM of bioavailable copper

Biosensors and Bioelectronics(2022)

Cited 6|Views9
No score
Abstract
While copper is an essential micronutrient and a technologically indispensable heavy metal, it is toxic at high concentrations, harming the environment and human health. Currently, copper is monitored with costly and low-throughput analytical techniques that do not evaluate bioavailability, a crucial parameter which can be measured only with living cells. We overcame these limitations by building upon yeast S. cerevisiae ’s native copper response and constructed a promising next-generation eukaryotic whole-cell copper biosensor. We combined a dual-reporter fluorescent system with an engineered CUP1 promoter and overexpressed Cup2 transactivator, constructing through four iterations a total of 16 variants of the biosensor, with the best one exhibiting a linear range of 10-8 to 10-3 M of bioavailable copper. Moreover, this variant distinguishes itself by superior specificity, detection limit, and linear range, compared to other currently reported eukaryotic and prokaryotic whole-cell copper biosensors. By re-engineering the transactivator, we altered the system’s sensitivity and growth rate, while assessing the performance of Cup2 with heterologous activation domains. Thus, in addition to presenting the next-generation whole-cell copper biosensor, this work urges for an iterative design of eukaryotic biosensors and paves the way toward higher sensitivity through transactivator engineering. ![Figure][1] ### Competing Interest Statement The authors have declared no competing interest. [1]: pending:yes
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined