Key directions for research and development of superconducting radio frequency cavities

S. Belomestnykh,S. Posen,D. Bafia,S. Balachandran, M. Bertucci, A. Burrill,A. Cano, M. Checchin,G. Ciovati,L. D. Cooley,G. Dalla Lana Semione,J. Delayen, G. Eremeev, F. Furuta,F. Gerigk,B. Giaccone, D. Gonnella,A. Grassellino,A. Gurevich, W. Hillert,M. Iavarone, J. Knobloch,T. Kubo,W. K. Kwok, R. Laxdal,P. J. Lee,M. Liepe,M. Martinello,O. S. Melnychuk, A. Nassiri, A. Netepenko, H. Padamsee, C. Pagani, R. Paparella,U. Pudasaini,C. E. Reece,D. Reschke,A. Romanenko, M. Ross, K. Saito,J. Sauls,D. N. Seidman,N. Solyak, Z. Sung, K. Umemori, A. -M. Valente-Feliciano, W. Venturini Delsolaro,N. Walker, H. Weise, U. Welp,M. Wenskat,G. Wu, X. X. Xi,V. Yakovlev, A. Yamamoto,J. Zasadzinski

arxiv(2022)

引用 0|浏览18
暂无评分
摘要
Radio frequency superconductivity is a cornerstone technology for many future HEP particle accelerators and experiments from colliders to proton drivers for neutrino facilities to searches for dark matter. While the performance of superconducting RF (SRF) cavities has improved significantly over the last decades, and the SRF technology has enabled new applications, the proposed HEP facilities and experiments pose new challenges. To address these challenges, the field continues to generate new ideas and there seems to be a vast room for improvements. In this paper we discuss the key research directions that are aligned with and address the future HEP needs.
更多
查看译文
关键词
radio frequency cavities
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要