Chrome Extension
WeChat Mini Program
Use on ChatGLM

On rapid binary mass transfer - I. Physical model

arXiv (Cornell University)(2023)

Cited 3|Views7
No score
Abstract
In some semidetached binary systems, the donor star may transfer mass to the companion at a very high rate. We propose that, at sufficiently high mass-transfer rates such that the accretion disc around the companion becomes geometrically thick (or advection-dominated) near the disc outer radius, a large fraction of the transferred mass may be lost through the outer Lagrangian (L2) point, as a result of the excessive energy generated by viscous heating that cannot be efficiently radiated away. A physical model is constructed where the L2 mass-loss fraction is given by the requirement that the remaining material in the disc has Bernoulli number equal to the L2 potential energy. Our model predicts significant L2 mass-loss at mass transfer rates exceeding a few 10(-4) M-circle dot yr(-1). An equatorial circumbinary outflow (CBO) is formed in these systems. Implications for the orbital evolution and the observational appearance of the system are discussed. In particular, (1) rapid angular momentum loss from the system tends to shrink the orbit, and hence may increase the formation rate of mergers and gravitational-wave sources; and (2) photons from the hot disc wind are reprocessed by the CBO into longer wavelength emission in the infrared bands, consistent with Spitzer observations of some ultra-luminous X-ray sources.
More
Translated text
Key words
binaries: general,gravitational waves,stars: mass-loss
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined