A thermal conductivity sensor based on mixed carbon material modification for hydrogen detection

REVIEW OF SCIENTIFIC INSTRUMENTS(2022)

引用 2|浏览3
暂无评分
摘要
In order to overcome the many shortcomings of traditional hot-wire thermal conductivity sensor design, a new design method was proposed in which a graphene-composite carbon nanotube mixed carbon material was used as a thermal conductivity sensor carrier instead of nano-alumina particles. Taking advantage of the large specific surface area and high thermal conductivity of graphene, as well as the characteristics of a large number of gas transport channels modified by carbon nanotubes, a high-efficiency gas heat exchange medium is made. In order to improve the consistency of the product, electrochemical preparation of an aluminum oxide film material is used to make the chip substrate of the thermal conductivity sensor by MEMS process technology, and the heating sensitive electrode of the sensor is made by a thick film process. Experiments show that the sensor prepared by this method has high sensitivity and zero point stability and has greatly improved the detection accuracy and response time. The sensitivity of the sensor to hydrogen detection increases to 3.287 mV/1%H-2, and the response time is shorter than 5.4 s. The research results have good application prospects.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要