谷歌浏览器插件
订阅小程序
在清言上使用

Navier-Stokes Equations Do Not Describe the Smallest Scales of Turbulence in Gases

PHYSICAL REVIEW LETTERS(2022)

引用 15|浏览4
暂无评分
摘要
In turbulent flows, kinetic energy is transferred from the largest scales to progressively smaller scales, until it is ultimately converted into heat. The Navier-Stokes equations are almost universally used to study this process. Here, by comparing with molecular-gas-dynamics simulations, we show that the NavierStokes equations do not describe turbulent gas flows in the dissipation range because they neglect thermal fluctuations. We investigate decaying turbulence produced by the Taylor-Green vortex and find that in the dissipation range the molecular-gas-dynamics spectra grow quadratically with wave number due to thermal fluctuations, in agreement with previous predictions, while the Navier-Stokes spectra decay exponentially. Furthermore, the transition to quadratic growth occurs at a length scale much larger than the gas molecular mean free path, namely in a regime that the Navier-Stokes equations are widely believed to describe. In fact, our results suggest that the Navier-Stokes equations are not guaranteed to describe the smallest scales of gas turbulence for any positive Knudsen number.
更多
查看译文
关键词
turbulence,smallest scales,gases,navier-stokes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要